INTRODUCTION TO ARITHMETIC DYNAMICS

CHARLES FAVRE

7 times one hour twenty minutes

1. INTRODUCTION: WHAT IS ARITHMETIC DYNAMICS?

(15 minutes)

- foreword: unusual course (some proofs are omitted, some introduction to a wide subject)

- notion of (pre)-periodic points, of prime period; ω -limit set

2. RATIONAL FUNCTION IN ONE VARIABLE (OVER ANY FIELD)

(1h05)

-
$$f(T) = \frac{P(T)}{Q(T)}$$
, $\mathbb{P}^1(K) = K \cup \{\infty\}$, poles and zeroes

- number of preimages, number of critical points (K of char. 0)

- estimates on the number of (pre)-periodic points

- when K is alg. closed, the number of periodic points in infinite

End of talk 1

3. Preperiodic points over a number field K

(30 minutes)

- Theorem 1: $f \in K(T)$ admits finitely many preperiodic points over K
- discussion when K is alg. closed,
- examples: monomial maps
- example: quadratic maps over $K = \mathbb{R}$
- a concrete example : $P(z) = z^2 \frac{29}{16}$ has 8 preperiodic points, and one orbit of period 3

- discuss Poonen's conjecture for quadratic polynomials with $c \in \mathbb{Q}$: no \mathbb{Q} -periodic points of period ≥ 4 , and the number of preperiodic points in \mathbb{Q} is ≤ 8 (excluding infinity).

Date: November 22, 2018.

4. The uniform boundedness conjecture

(40 minutes)

- The uniform boundedness conjecture (statement)
- some partial results (Benedetto)
- Weierstrass model for elliptic curves
- Descent of the doubling map to \mathbb{P}^1 , preperiodic points
- Mordell-Weil (statement)
- UBC and Merel's theorem

End of talk 2

5. Archimedean and Non-Archimedean Norms

(70 minutes)

- valued/metrized/normed fields
- Archimedean examples : $\mathbb{R}, \mathbb{C},$
- classification of complete Archimedean fields
- basic non-Archimedean fields : definition, \mathbb{Q}_p , residue field
- *p*-adic fields: norm of finite extensions of \mathbb{Q}_p ,
- construction of \mathbb{C}_p , and proof it is algebraically closed

6. Norms on number fields

- Ostrowski's theorem and places in \mathbb{Q} (10 minutes)

End of talk 3

- the global product formula

⁻ norms on number fields: the Archimedean case. Local product formula. Proof of the classification.

⁻ norms on number fields: the non-Archimedean case. Local product formula. Proof of the classification.

7. Heights

(50 minutes)

- naive definition in terms of minimal polynomial

- interpretation over ${\mathbb Q}$ in terms of absolute values

- definition of h in terms of norms on K, and in terms of the Galois conjugates of an element

End of talk 4

- Northcott property

8. Dynamical heights

(1h00)

- Kronecker theorem

- dynamical height for a rational map in one variable

- proof of Theorem 1.

- refined conjecture using heights: dynamical Lehmer's conjecture 3.25

9. Complex Fatou/Julia theory for polynomials

(20 minutes)

 $P \in \mathbb{C}[T]$

- g_P , J(P), K(P)
- K(P) connected iff all critical points have bounded orbits
- periodic points and J(P)

- comments on the dynamics in the Fatou set

End of talk 5

10. The Berkovich Affine line

(1h20)

- Berkovich line using multiplicative semi-norms

- type of points

- link with balls

11. THE NON-ARCHIMEDEAN FATOU/JULIA THEORY FOR POLYNOMIALS

(40 minutes)

- action of P on the Berkovich affine line; $P(x_{\bar{B}}) = x_{P(\bar{B})}$.

- g_P , K(P), J(P)

- K(P) connected iff P has potential good reduction

12. Benedetto's result on UBC

(40 minutes)

- Statement: N, d, s fixed. There exists a constant C > 0 such that any polynomial of degree $\leq d$ defined over a number field of degree $\leq N$ and having $\leq s$ bad places has at most $Cs \log s$ preperiodic points over K.

- idea of proof for d = 2, $P_c(z) = z^2 + c$.

End of talk 7

13. References

- (1) J. Silverman. The arithmetic of dynamical systems. Chapter 3.
- (2) A. Robert. A course in *p*-adic analysis. Chapters 1, 2 & 3.
- (3) Koblitz. *p*-adic numbers, *p*-adic analysis and ζ -functions. Chapter I & III.
- (4) M. Baker and R. Rumely.

14. LIST OF EXERCICES AND PROBLEMS

Rational functions.

- (A.1) Suppose $f, g \in K(T)$ are two rational functions of positive degree. Prove that $\deg(f \circ g) = \deg(f) \times \deg(g)$. [ASSIGNMENT]
- (A.2) Suppose K is a field of characteristic 0, and let $f \in K[T]$ be a polynomial of degree $d \ge 1$. Prove that

$$\sum_{x \in \mathbb{P}^1(K)} (\deg_x(f) - 1) = 2d - 2 .$$

Indication: $\deg_{\infty}(f) = d$ and for any $x \in K$, we have $\operatorname{ord}_{x}(f') = \deg_{x}(f) - 1$.

- (A.3) Let K be a field of characteristic p > 0. Prove that $\deg_x(F) = p$ for any $x \in \mathbb{P}^1(K)$ when $F(T) = T^p$ is the Frobenius map.
- (A.4) Suppose K is an algebraically closed field of characteristic p > 0, and $f \in K(T)$ has degree $d \ge 2$. Show that the set of periodic points of period prime to p is infinite.

Periodic points.

- (B.1) Prove that $z^2 + c$ has a finite number of real pre-periodic points when c > 3/4.
- (B.2) Prove that $z^2 2$ is conjugated to the Tchebyshev polynomial $T_2(z + \frac{1}{z}) = z^2 + \frac{1}{z^2}$; and show that $z^2 2$ has infinitely many real periodic points.
- (B.3) Prove that $z^2 + c$ has infinitely many pre-periodic points when c < -2. (Indication: construct two disjoint closed segments I_+ and I_- such that $P(I_{\pm}) \subset I_+ \cup I_-$ and use symbolic dynamics).
- (B.4) Prove that $z^2 \frac{13}{9}$ has exactly 6 pre-periodic points in \mathbb{Q} . [ASSIGNMENT]

p-adic fields.

- (C.1) Let K/\mathbb{Q}_p be any finite extension. Write $f_K = [\tilde{K} : \mathbb{F}_p]$, and introduce $e_K \in \mathbb{N}^*$ such that $|K^*| = p^{\mathbb{Z}/e_K}$. Show that $e_K f_K \leq [K : \mathbb{Q}_p]$. [ASSIGNMENT]
- (C.2) Let K/\mathbb{Q}_p be any finite extension, and choose a basis $K = \mathbb{Q}_p e_1 + \ldots + \mathbb{Q}_p e_n$. Put the product norm on K. Show that the function $f(x) = |N_{K/\mathbb{Q}_p}(x)|$ is continuous on K. [ASSIGNMENT]
- (C.3) Show that $\mathbb{Q}_p^{\text{alg}}$ is not complete. To that end introduce $F_n = \{x \in \mathbb{Q}_p^{\text{alg}}, \deg(x) \leq n\}$. Show that it is a closed set which has empty interior. Conclude using Baire theorem.
- (C.4) Let K be any non-Archimedean normed field, and let K^{alg} be an algebraic closure of K. Recall from the lectures that K^{alg} is endowed with a unique norm extending the one on K. Show that the residue field of K^{alg} is an algebraic closure of the residue field of K.
- (C.5) Let K be any non-Archimedean normed field. Show that K is locally compact iff its residue field should be finite and its value group $|K^*|$ is a discrete subgroup of (\mathbb{R}^*_+, \times) .
- (C.6) Show that a non-trivial Archimedean norm on \mathbb{Q} is equal to $|\cdot|^{\epsilon}$ for some $\epsilon \in (0, 1]$ where $|\cdot|$ is the standard norm.

Norms on number fields.

- (D.1) Suppose K is a finite extension of Q and let | · | be any norm on K whose restriction to Q is the p-adic norm for some prime number p. Let K be the completion of (K, | · |). Prove that the extension K/Qp is finite. (indication: write K = x1Q ⊕ ... ⊕ xnQ and prove that x1Qp ⊕ ... ⊕ xnQp ⊂ K is complete) [ASSIGNMENT]
 (D.2) Consider the degree 2 extension K = Q[i] over Q. Pick any prime number p. Show
- (D.2) Consider the degree 2 extension $K = \mathbb{Q}[i]$ over \mathbb{Q} . Pick any prime number p. Show that the set of places on K extending $|\cdot|_p$ has either one or two elements depending on whether $T^2 + 1$ splits in \mathbb{Q}_p or not. (the latter appears iff p is congruent to 1 modulo 4).

Heights.

- (E.1) Give an explicit bound in terms of d and N on the number of points $x \in \mathbb{Q}^{\text{alg}}$ such that $\deg(x) \leq d$ and $h(x) \leq N$.
- (E.2) Write $c(N) = \operatorname{Card} \{x \in \mathbb{Q}, h(x) \leq N\}$. Find constant b_1, b_2 such that $b_1 N^2 \leq c(N) \leq b_2 N^2$, and show that $c(N)/N^2 \to \pi^2/6$ as $N \to \infty$.
- (E.3) Recall that the modified height of $x \in \mathbb{Q}^{\text{alg}}$ is defined as

$$\bar{h}(x) := \frac{1}{\deg(x)} \log \max\{|a_0|, \dots, |a_d|\}$$

where $a_0T^d + \ldots + a_d$ is the minimal polynomial of x with $a_i \in \mathbb{Z}$ and $gcd\{a_i\} = 1$. 1. Prove that $|h(x) - \bar{h}(x)|$ is bounded by a universal constant (independent on d). [ASSIGNMENT]

(E.4) Compute the height of $\sqrt{2}$ and 2 + i.

The Berkovich affine line. In this section, we fix any non-Archimedean algebraically closed complete metrized field $(K, |\cdot|)$,

- (F.1) Pick any polynomial $P \in K[T]$. Show that there exists a finite subset $\mathcal{E} \subset \tilde{K}$ such that $\sup_{\bar{B}(0,1)} |P| = |P(z)|$ for all $z \in K^0$ whose reduction does not belong to \mathcal{E} .
- (F.2) Pick any polynomial $P = a_1T + \ldots + a_dT^d \in K[T]$ and any real number $r \ge 0$. Show that $P(\bar{B}(0,r)) = \bar{B}(0, \max\{|a_i|r^i\})$. Indication: treat first the case r = 1, pick $|w| \le \max\{|a_i|r^i\}$ and look at the *d* solutions of the equation P(z) = w. [ASSIGNMENT]

Dynamics on non-Archimedean fields. In this section, we fix any non-Archimedean complete metrized field $(K, |\cdot|)$,

- (G.1) Suppose the residual characteristic of K is 2, and consider a quadratic polynomial $P_c(z) = z^2 + c$ with $1 < |c| \le 4$.
 - Show that the critical point escapes to infinity.
 - Compute the norm of the two fixed points x_{\pm} of P_c .
 - Show that the ball B centered at x_+ of radius $|x_+ x_-|$ which is totally invariant.
 - Deduce that P_c has potential good reduction.
- (G.2) Suppose the residual characteristic of K is p, and pick any polynomial $P \in K[T]$ of degree d. We assume that P has good reduction.
 - Show that all fixed points of P are attracting (the derivative at the fixed point has norm < 1) when p divides d.
 - Show that for any $\zeta \in K^0$ fixed by \tilde{P} there exists at least one fixed point z of P whose reduction is equal to ζ , and show that this fixed point is unique when d is prime to p.
- (G.3) Show that the Julia set of any polynomial is totally discontinuous by proving that any two points in J(P) are not comparable. [ASSIGNMENT]

CNRS - CENTRE DE MATHÉMATIQUES LAURENT SCHWARTZ, ÉCOLE POLYTECHNIQUE, 91128 PALAISEAU CEDEX, FRANCE

E-mail address: charles.favre@polytechnique.edu