INTRODUCTION TO ARITHMETIC DYNAMICS

CHARLES FAVRE

7 times one hour twenty minutes

1. Introduction: What is arithmetic dynamics?

(15 minutes)

- foreword: unusual course (some proofs are omitted, some introduction to a wide subject)
- notion of (pre)-periodic points, of prime period; ω-limit set

2. Rational function in one variable (over any field)

(1h05)

- $f(T)=\frac{P(T)}{Q(T)}, \mathbb{P}^{1}(K)=K \cup\{\infty\}$, poles and zeroes
- number of preimages, number of critical points (K of char. 0)
- estimates on the number of (pre)-periodic points
- when K is alg. closed, the number of periodic points in infinite

End of talk 1

3. Preperiodic points over a number field K

(30 minutes)

- Theorem 1: $f \in K(T)$ admits finitely many preperiodic points over K
- discussion when K is alg. closed,
- examples: monomial maps
- example: quadratic maps over $K=\mathbb{R}$
- a concrete example : $P(z)=z^{2}-\frac{29}{16}$ has 8 preperiodic points, and one orbit of period 3
- discuss Poonen's conjecture for quadratic polynomials with $c \in \mathbb{Q}$: no \mathbb{Q}-periodic points of period ≥ 4, and the number of preperiodic points in \mathbb{Q} is ≤ 8 (excluding infinity).

4. The uniform boundedness conjecture

(40 minutes)

- The uniform boundedness conjecture (statement)
- some partial results (Benedetto)
- Weierstrass model for elliptic curves
- Descent of the doubling map to \mathbb{P}^{1}, preperiodic points
- Mordell-Weil (statement)
- UBC and Merel's theorem

End of talk 2
5. Archimedean and non-Archimedean norms
(70 minutes)

- valued/metrized/normed fields
- Archimedean examples: \mathbb{R}, \mathbb{C},
- classification of complete Archimedean fields
- basic non-Archimedean fields : definition, \mathbb{Q}_{p}, residue field
- p-adic fields: norm of finite extensions of \mathbb{Q}_{p},
- construction of \mathbb{C}_{p}, and proof it is algebraically closed

6. Norms on number fields

- Ostrowski's theorem and places in \mathbb{Q} (10 minutes)

End of talk 3

- norms on number fields: the Archimedean case. Local product formula. Proof of the classification.
- norms on number fields: the non-Archimedean case. Local product formula. Proof of the classification.
- the global product formula

7. Heights

(50 minutes)

- naive definition in terms of minimal polynomial
- interpretation over \mathbb{Q} in terms of absolute values
- definition of h in terms of norms on K, and in terms of the Galois conjugates of an element

End of talk 4

- Northcott property

8. Dynamical heights

(1h00)

- Kronecker theorem
- dynamical height for a rational map in one variable
- proof of Theorem 1.
- refined conjecture using heights: dynamical Lehmer's conjecture 3.25

9. Complex Fatou/Julia theory for polynomials

(20 minutes)
$P \in \mathbb{C}[T]$

- $g_{P}, J(P), K(P)$
- $K(P)$ connected iff all critical points have bounded orbits
- periodic points and $J(P)$
- comments on the dynamics in the Fatou set

End of talk 5

10. The Berkovich affine line

(1h20)

- Berkovich line using multiplicative semi-norms
- type of points
- link with balls

11. THE NON-ARChimedean Fatou/Julia theory for polynomials

(40 minutes)

- action of P on the Berkovich affine line; $P\left(x_{\bar{B}}\right)=x_{P(\bar{B})}$.
- $g_{P}, K(P), J(P)$
- $K(P)$ connected iff P has potential good reduction

12. Benedetto's result on UBC

(40 minutes)

- Statement: N, d, s fixed. There exists a constant $C>0$ such that any polynomial of degree $\leq d$ defined over a number field of degree $\leq N$ and having $\leq s$ bad places has at most $C s \log s$ preperiodic points over K.
- idea of proof for $d=2, P_{c}(z)=z^{2}+c$.

End of talk 7

13. References

(1) J. Silverman. The arithmetic of dynamical systems. Chapter 3.
(2) A. Robert. A course in p-adic analysis. Chapters $1,2 \& 3$.
(3) Koblitz. p-adic numbers, p-adic analysis and ζ-functions. Chapter I \& III.
(4) M. Baker and R. Rumely.

14. List of exercices and problems

Rational functions.

(A.1) Suppose $f, g \in K(T)$ are two rational functions of positive degree. Prove that $\operatorname{deg}(f \circ$ $g)=\operatorname{deg}(f) \times \operatorname{deg}(g) .[$ ASSIGNMENT]
(A.2) Suppose K is a field of characteristic 0 , and let $f \in K[T]$ be a polynomial of degree $d \geq 1$. Prove that

$$
\sum_{x \in \mathbb{P}^{1}(K)}\left(\operatorname{deg}_{x}(f)-1\right)=2 d-2 .
$$

Indication: $\operatorname{deg}_{\infty}(f)=d$ and for any $x \in K$, we have $\operatorname{ord}_{x}\left(f^{\prime}\right)=\operatorname{deg}_{x}(f)-1$.
(A.3) Let K be a field of characteristic $p>0$. Prove that $\operatorname{deg}_{x}(F)=p$ for any $x \in \mathbb{P}^{1}(K)$ when $F(T)=T^{p}$ is the Frobenius map.
(A.4) Suppose K is an algebraically closed field of characteristic $p>0$, and $f \in K(T)$ has degree $d \geq 2$. Show that the set of periodic points of period prime to p is infinite.

Periodic points.

(B.1) Prove that $z^{2}+c$ has a finite number of real pre-periodic points when $c>3 / 4$.
(B.2) Prove that $z^{2}-2$ is conjugated to the Tchebyshev polynomial $T_{2}\left(z+\frac{1}{z}\right)=z^{2}+\frac{1}{z^{2}}$; and show that $z^{2}-2$ has infinitely many real periodic points.
(B.3) Prove that $z^{2}+c$ has infinitely many pre-periodic points when $c<-2$. (Indication: construct two disjoint closed segments I_{+}and I_{-}such that $P\left(I_{ \pm}\right) \subset I_{+} \cup I_{-}$and use symbolic dynamics).
(B.4) Prove that $z^{2}-\frac{13}{9}$ has exactly 6 pre-periodic points in \mathbb{Q}. [ASSIGNMENT]

p-adic fields.

(C.1) Let K / \mathbb{Q}_{p} be any finite extension. Write $f_{K}=\left[\tilde{K}: \mathbb{F}_{p}\right]$, and introduce $e_{K} \in \mathbb{N}^{*}$ such that $\left|K^{*}\right|=p^{\mathbb{Z} / e_{K}}$. Show that $e_{K} f_{K} \leq\left[K: \mathbb{Q}_{p}\right]$. [ASSIGNMENT]
(C.2) Let K / \mathbb{Q}_{p} be any finite extension, and choose a basis $K=\mathbb{Q}_{p} e_{1}+\ldots+\mathbb{Q}_{p} e_{n}$. Put the product norm on K. Show that the function $f(x)=\left|N_{K / \mathbb{Q}_{p}}(x)\right|$ is continuous on K. [ASSIGNMENT]
(C.3) Show that $\mathbb{Q}_{p}^{\text {alg }}$ is not complete. To that end introduce $F_{n}=\left\{x \in \mathbb{Q}_{p}^{\text {alg }}, \operatorname{deg}(x) \leq n\right\}$. Show that it is a closed set which has empty interior. Conclude using Baire theorem.
(C.4) Let K be any non-Archimedean normed field, and let $K^{\text {alg }}$ be an algebraic closure of K. Recall from the lectures that $K^{\text {alg }}$ is endowed with a unique norm extending the one on K. Show that the residue field of $K^{\text {alg }}$ is an algebraic closure of the residue field of K.
(C.5) Let K be any non-Archimedean normed field. Show that K is locally compact iff its residue field should be finite and its value group $\left|K^{*}\right|$ is a discrete subgroup of $\left(\mathbb{R}_{+}^{*}, \times\right)$.
(C.6) Show that a non-trivial Archimedean norm on \mathbb{Q} is equal to $|\cdot|^{\epsilon}$ for some $\epsilon \in(0,1]$ where $|\cdot|$ is the standard norm.

Norms on number fields.

(D.1) Suppose K is a finite extension of \mathbb{Q} and let $|\cdot|$ be any norm on K whose restriction to \mathbb{Q} is the p-adic norm for some prime number p. Let \hat{K} be the completion of $(K,|\cdot|)$. Prove that the extension \hat{K} / \mathbb{Q}_{p} is finite. (indication: write $K=x_{1} \mathbb{Q} \oplus \ldots \oplus x_{n} \mathbb{Q}$ and prove that $x_{1} \mathbb{Q}_{p} \oplus \ldots \oplus x_{n} \mathbb{Q}_{p} \subset \hat{K}$ is complete) [ASSIGNMENT]
(D.2) Consider the degree 2 extension $K=\mathbb{Q}[i]$ over \mathbb{Q}. Pick any prime number p. Show that the set of places on K extending $|\cdot|_{p}$ has either one or two elements depending on whether $T^{2}+1$ splits in \mathbb{Q}_{p} or not. (the latter appears iff p is congruent to 1 modulo 4).

Heights.

(E.1) Give an explicit bound in terms of d and N on the number of points $x \in \mathbb{Q}^{\text {alg }}$ such that $\operatorname{deg}(x) \leq d$ and $h(x) \leq N$.
(E.2) Write $c(N)=\operatorname{Card}\{x \in \mathbb{Q}, h(x) \leq N\}$. Find constant b_{1}, b_{2} such that $b_{1} N^{2} \leq c(N) \leq$ $b_{2} N^{2}$, and show that $c(N) / N^{2} \rightarrow \pi^{2} / 6$ as $N \rightarrow \infty$.
(E.3) Recall that the modified height of $x \in \mathbb{Q}^{\text {alg }}$ is defined as

$$
\bar{h}(x):=\frac{1}{\operatorname{deg}(x)} \log \max \left\{\left|a_{0}\right|, \ldots,\left|a_{d}\right|\right\}
$$

where $a_{0} T^{d}+\ldots+a_{d}$ is the minimal polynomial of x with $a_{i} \in \mathbb{Z}$ and $\operatorname{gcd}\left\{a_{i}\right\}=$ 1. Prove that $|h(x)-\bar{h}(x)|$ is bounded by a universal constant (independent on d). [ASSIGNMENT]
(E.4) Compute the height of $\sqrt{2}$ and $2+i$.

The Berkovich affine line. In this section, we fix any non-Archimedean algebraically closed complete metrized field $(K,|\cdot|)$,
(F.1) Pick any polynomial $P \in K[T]$. Show that there exists a finite subset $\mathcal{E} \subset \tilde{K}$ such that $\sup _{\bar{B}(0,1)}|P|=|P(z)|$ for all $z \in K^{0}$ whose reduction does not belong to \mathcal{E}.
(F.2) Pick any polynomial $P=a_{1} T+\ldots+a_{d} T^{d} \in K[T]$ and any real number $r \geq 0$. Show that $P(\bar{B}(0, r))=\bar{B}\left(0, \max \left\{\left|a_{i}\right| r^{i}\right\}\right)$. Indication: treat first the case $r=1$, pick $|w| \leq$ $\max \left\{\left|a_{i}\right| r^{i}\right\}$ and look at the d solutions of the equation $P(z)=w$. [ASSIGNMENT]

Dynamics on non-Archimedean fields. In this section, we fix any non-Archimedean complete metrized field $(K,|\cdot|)$,
(G.1) Suppose the residual characteristic of K is 2 , and consider a quadratic polynomial $P_{c}(z)=z^{2}+c$ with $1<|c| \leq 4$.

- Show that the critical point escapes to infinity.
- Compute the norm of the two fixed points $x_{ \pm}$of P_{c}.
- Show that the ball B centered at x_{+}of radius $\left|x_{+}-x_{-}\right|$which is totally invariant.
- Deduce that P_{c} has potential good reduction.
(G.2) Suppose the residual characteristic of K is p, and pick any polynomial $P \in K[T]$ of degree d. We assume that P has good reduction.
- Show that all fixed points of P are attracting (the derivative at the fixed point has norm <1) when p divides d.
- Show that for any $\zeta \in K^{0}$ fixed by \tilde{P} there exists at least one fixed point z of P whose reduction is equal to ζ, and show that this fixed point is unique when d is prime to p.
(G.3) Show that the Julia set of any polynomial is totally discontinuous by proving that any two points in $J(P)$ are not comparable. [ASSIGNMENT]

CNRS - Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France

E-mail address: charles.favre@polytechnique.edu

